
 MATHSOC's Interactive MATLAB Guide - v1 (T2 2019)

INTRODUCTION
 Hiya! Welcome to UNSW MathSoc's interactive MATLAB guide, created by James Gao and Jeffrey Yang.

 In this interactive guide, we'll be going through 4 main self-guided mini-projects: (1) Predator and
Prey Modelling; (2) Eigenvalue and Eigenvector Solver; (3) Markov Chain Stationary Distribution
Solver (beyond the scope of first year maths) and (4) Graph and Network Algorithms (MATH1081
content).

 The ideaology behind these projects is the full coverage of the MATLAB Self-Paced modules required for
MATH1251 students to peruse, plus a little bit extra. Hopefully through this, they can do some revision whilst
gaining a better understanding of the beauty and intricacies within MATLAB. We shall start off with a quick
review of basic MATLAB commands, and more advanced information and functionality will be introduced
later when relevant.

 MATLAB COMMANDS REVIEW
 Special thanks goes to Dr Quoc Thong Le Gia and his MATH2301 course materials which much of the
below content are adapated from.

 We first note that every in-built function in MATLAB comes with their respective documentation that can be
accessed through the function from the command line. This is done by typing followed by the name
of the function in question, for example:

help help

 help Display help text in Command Window.
 help NAME displays the help for the functionality specified by NAME,
 such as a function, operator symbol, method, class, or toolbox.
 NAME can include a partial path.

 If NAME is not specified, help displays content relevant to your
 previous actions.

 Some classes require that you specify the package name. Events,
 properties, and some methods require that you specify the class
 name. Separate the components of the name with periods, using one
 of the following forms:

 help CLASSNAME.NAME
 help PACKAGENAME.CLASSNAME
 help PACKAGENAME.CLASSNAME.NAME

 If NAME is the name of both a folder and a function, help displays
 help for both the folder and the function. The help for a folder
 is usually a list of the program files in that folder.

 If NAME appears in multiple folders on the MATLAB path, help displays
 information about the first instance of NAME found on the path.

 NOTE:

 In the help, some function names are capitalized to make them

1

 stand out. In practice, type function names in lowercase. For
 functions that are shown with mixed case (such as javaObject),
 type the mixed case as shown.

 EXAMPLES:

 help close % help for the CLOSE function
 help database/close % help for CLOSE in the Database Toolbox
 help database % list of functions in the Database Toolbox
 % and help for the DATABASE function
 help containers.Map.isKey % help for isKey method

 See also doc, docsearch, lookfor, matlabpath, which.

 Reference page for help

 It is a often good idea to refer back to the documentation if you are unsure about syntax, functionality,
arguments, exceptions or even if you just need a quick refresher.

Vectors

 Vectors in MATLAB are denoted by square brackets, , wherein the commas separate
elements horizontally and semicolons separate the elements of the vector vertically.

A = [1,2,3]; B = [1;2;3]; C = [1,2,3; 4,5,6; 7,8,9];

 In the above example, A is a row vector, B is a column vector and C is a matrix. If you would like to try

yourself, please enter the code in the gray box below and click the green button in the tab
above.

% Type your commands below:

 Note that the indexing of a element in a vector is done through round brackets, (), at the end of the vector,
for example .

Functions

 Function files in MATLAB, called (M-files) allow one to create ones own MATLAB commands. A function
file is a separate file that has these lines:

function [yout1, yout2, ...] = funcname(xin1, xin2, ...)
% comment line 1
% comment line 2
% ...
yout1 = ...;
yout2 = ...;
...
end

 To run a function, we merely have to call on it using the defined name and input variables of choice for
instance in the command line, where the results of the function will

be deposited as a vector with variable names . This is the same as any in-built function

like .

2

 Notes:

• The function M-file names and the function name that appears in the first line of the file of the file
should be identical. In reality, MATLAB ignores the function name in the first line and executes
functions based on the file name.

• All variables inside a function are local and are erased after execution of the function.

 It is good to note that there is another class of functions called anonymous functions which can be
defined straight at the MATLAB command line, but also in a M-file if you so choose. As you can imagine,
anonymous functions are much less powerful and versatile in functionality, and they are of the form:

fun1 = @(x) x.^2;
fun2 = @(x,y) x+y;

 To see how we may use this, let us consider a parametric equation with implicit definitions:

x_vals = @(t) 16*(sin(t)).^3;
y_vals = @(t) 13*cos(t) - 5*cos(2*t) - 2*cos(3*t) - cos(4*t);

 Defining an interval t, we can thus plot the curve through the given implicit functions:

t = linspace(-10,10,1000);
%generate a row vector of 1000 points linearly spaced between -10 and 10
plot(x_vals(t), y_vals(t))

3

 In this guide, we will be going the step-by-step creation of 2 function files that will be separately included
for reference.

MORE MATLAB COMMANDS

Conditional Statements:
 Conditional statements (if statements) provide a mechanism for branching in a computer program. They
are in the following form:

if <logical expression 1>
 <statement 1>
elseif <logical expression 2>
 <statement 2>
else
 <statement 3>
end

 Zero or more than one branch is permitted. The branch can also be omitted.

Loop Statements:
 A loop is a programming construct in which a group of statements is executed repeated.

 For Loops has the form:

for n = 1:N %a value for N has to be pre-defined
 <statement>
end

 While Loops has the form:

while <logical expression>
 <statement>
end

 For practice, try outputting the first 1000 square numbers below:

%Type your commands below:

SECTION 1: PREDATOR - PREY MODELLING
Special thanks goes to Dr John Murray and his MATH6781 course mateiials which much of the below
content are adapted from.

4

 Drawing a parallel to chemical equations and the law of mass action, the population law of mass action
has been empirically formulated to describe how two populations interact,

The rate of change of one population due to the interaction
with another is proportional to the product of the two populations.

 In its simplest form, the predator-prey relationship can be modelled through DEs as:

 Intuitively, we can see that the x population is the the predator population as without interaction with
the prey population y, the rate of change of the x population is negative as evidenced by the negative sign in
front of the term, .

 This means that if left alone, population x naturally decreases and y naturally increases.
Correspondingly, x population increases if allowed to interact with y population (positive coefficient),
and x population will decrease with mutual interaction, in line with the behaviour of the prey population.

 More complicated versions of the model can be developed through the adding and modification
of x and y terms to simulate: overcrowding; cooperation; satiation etc... Today we will be focusing on this
particular relationship:

TLDR: We will be modelling the system described by the above differential equations.

 Here, we will be modelling the solution orbits on the phase plane, around a steady state (quantity

of that does not change with time), which in this case turns out to be - trust me.

ss = [5,10]; %[c/d, a/b]
%generate a grid of values around the steady state
x0 = linspace(0, 5*ss(1), 20);
y0 = linspace(0, 5*ss(2), 20);
[X, Y] = meshgrid(x0,y0);

 Next we calculate the values that takes over a certain time horizon.

U = (1-0.2*X).*Y; %the prey derivative
V = (0.1+1*Y).*X; %the predator derivative
%Note that '.' is needed before any operators to perform element wise
%operation.

xinit=[1 2 5; 2 2 2]; %initial x and y values for the orbit curve
tspan=[0 10]; %time horizontal to plot the curves on

%we use ode solver to calculate tragetories of x and y values

5

for i=1:3
 [t,x]=ode45(@predprey_de,tspan, xinit(:,i));
 xsol(i)={[t,x]};
end

 For plotting, we will use the plot function:

quiver(X,Y,U,V)
hold on
plot(5,10,'ro','MarkerFaceColor','r','MarkerSize',5) %steady state

for i=1:3
 sol=xsol{i};
 x=sol(:,2);
 y=sol(:,3);
 plot(x,y,'k-')
end

hold off
xlabel('Prey')
ylabel('Predators')

 Here, the black line represents the trajectory of predator and prey population over time, whilst the blue
arrows are the magnitute and direction of change at each point of population. This is governed by the DEs
that we described early and the bigger the arrow, the bigger the change over time.

6

 This kind of circular orbit portrait - a linear planar autonomous system - is classificed as
a Centre or Vortex. Note that the population of prey and predators follow a fixed cycle over time in a closed
system and any changes in either will simply bump them into a different layer of curve instead of along the
particular curve.

 If the mathematics behind this kind of modelling is of particular interest to you, check out MATH2221,
MATH3201 and MATH6781.

SECTION 2: EIGENVALUE AND EIGENVECTOR SOLVER
 Now, lets get started with our Eigenvalue and Eigenvector Solver. We will attempt to re-create the in-
built MATLAB function from formulae and steps derived in MATH1251 for the simpliest matrix as
a demonstration.

 Remember from lectures that to find eigenvalues, we need to first find values of λ which satisfies
the characteristic equation of a square matrix A, namely those values of λ for which ,

where I is the identity matrix.

 Note that the characteristic polynomial of a matrix is: .
Knowing this, we can easily create a function to find and solve for the values of x in the characteristic
polynomial. That will be done using the function, which offers both symbolic and numeric equation

solvers. The easiest version is which we will use below to solve for variable x.

function [solx] = eigenvalues(A)
 syms x
 a = 1; b = -(A(1,1) + A(2,2)); c = A(1,1)*A(2,2) - A(1,2)*A(2,1);
 eqn = a*x^2 + b*x + c == 0;
 solx = solve(eqn,x)
end

 To see this in action, first let us define the matrix A:

A = [0,1; -2,-3];

 Then, we can use the function to find the solutions to the given characteristic polynomial, this is:

syms x
a = 1; b = -(A(1,1) + A(2,2)); c = A(1,1)*A(2,2) - A(1,2)*A(2,1);
eqn = a*x^2 + b*x + c == 0;
solx = solve(eqn,x)

solx =

 Note that we can check the solutions by finding the roots of the polynomial through the quadratic equation:

a = 1; b = -(A(1,1) + A(2,2)); c = A(1,1)*A(2,2) - A(1,2)*A(2,1);

7

 x1 = (-b + sqrt(b^2 - 4*a*c))/(2*a)

x1 = -1

 x2 = (-b - sqrt(b^2 - 4*a*c))/(2*a)

x2 = -2

 Clearly, our two eigenvalues are and . Once the eigenvalues of the matrix A has been
found, we can find the corresponding eigenvectors by Gaussian Elimination. For each eigenvalue,
we have . Essentially, we are looking for the nullspace of the matrix , which can

be found using the function in MATLAB. Note that we cannot use the function because the

matrix is rank-deficient, thus the solution is not unique and also often displayed as .

 [m, n]= size(A);
 A1 = A - solx(1,1)*eye(m); b1 = zeros(1,m)';
 A2 = A - solx(2,1)*eye(m); b2 = zeros(1,m)';
 eig1 = null(A1)

eig1 =

 eig2 = null(A2)

eig2 =

 Thus, the final version of our solver function is:

function [solx, eig1, eig2] = eigenvalues(A)
 syms x
 a = 1; b = -(A(1,1) + A(2,2)); c = A(1,1)*A(2,2) - A(1,2)*A(2,1);
 eqn = a*x^2 + b*x + c == 0;
 solx = solve(eqn,x)

 [m, n]= size(A);
 A1 = A - solx(1,1)*eye(m); b1 = zeros(1,m)';
 A2 = A - solx(2,1)*eye(m); b2 = zeros(1,m)';
 eig1 = null(A1)
 eig2 = null(A2)
end

 As we said previously, MATLAB has an inbuilt function for this which is . Run it below to check the
validity of our solution:

 [V, D] = eig(A)

8

V = 2×2
 0.7071 -0.4472
 -0.7071 0.8944
D = 2×2
 -1 0
 0 -2

 This clumsy method can be easily extended to any matrix assuming you can be bothered to go
through and find the characteristic polynomial through solving for the determinant. However, it should be
clear that this is not how the function does it, which is way quicker and more efficient.

SECTION 3: MARKOV CHAIN STATIONARY DISTRIBUTION SOLVER
 This last section is dedicated with love to the students from my ACTL2102 PASS class whom I have made
solve for endless amounts of stationary distributions.

 A Markov Process has the Markov Property which can be precisely stated as:

 for . That is, given the present state, the past states do not have influence on the future.

 A Markov Chain is a Markov Process on a disrete index set which we will denote

by .

 For an irreducible (only one class, all states communicate), ergodic (positive recurrent, aperiodic) Markov

Chain, exists and is independent of i. Thus, , the long run proportion of time the Markov Chain is in

state i can be calculated using the equations: ; , where and P the probability

transition matrix.

 TLDR: We want to solve for in the equation .

 We first define the matrix P that we will use for our following calculations:

P = [0.6,0.3,0.1;0.4,0.4,0.2;0.2,0.1,0.7];

% [m,n] creates a vector storing the row (m) and column size (n) of the matrix P
[m, n] = size(P);

 We can then create a function that outputs the stationary distribution like magic:

function[stat_dist] = stat_dist_solver(P)
 [m, n] = size(P);
 Q = P' - eye(m); %eye(n) creates a nxn identity matrix
 R = [Q(1:(m-1),:); ones(1,m)];
 V = [zeros(1,m-1),1]';
 stat_dist = R\V
end

9

 Here, the Q matrix is created by expanding into a set of n simultaneous equations with on the

LHS. Moving it around, we will have . Since we have n equations to solve for n unknowns, when we

add the condition , we can delete the last line of Q creating R below where . Solving through

the backslash operator, we obtain the stationary distribution. This is demonstrated below:

Q = P' - eye(m); %eye(n) creates a nxn identity matrix
R = [Q(1:(m-1),:); ones(1,m)];
V = [zeros(1,m-1),1]';
stat_dist= R\V

stat_dist = 3×1
 0.4211
 0.2632
 0.3158

 To display the values in a clearer format, we can use a For loop:

for n = 1:size(stat_dist)
 fprintf('pi_%i = %.20f\n', n, stat_dist(n,1))
end

pi_1 = 0.42105263157894745607
pi_2 = 0.26315789473684214617
pi_3 = 0.31578947368421039776

SECTION 4: GRAPH AND NETWORK ALGORITHMS
This section is intended for students who have done MATH1081 Discrete Mathematics. Graph theory and
network theory have a wide range of applications in computer science and the natural sciences, as well as in
linguistics and the social sciences. Note that the functions discussed below are chosen specifically to be of
relevance to those studying/ have studied MATH1081 and that MATLAB has a lot more tools for working with
graphs.

We begin with an introduction on how to construct and visualise directed and undirected graphs in MATLAB
before discussing the graph algorithms that are available as functions in MATLAB.

Recall that a graph of consists of a set of nodes (or verticies) that are connected by edges. Graphs may be
directed (if the edges each have a direction) and weighted (if the edges each have a weight). To create a
graph, you can either provide the adjacency matrix or the edge list. We present both methods below:

Adjacency Matrix

A = [0 1 2; 1 0 3; 2 3 0];
node_names = {'A','B','C'};
G = graph(A,node_names);
H = plot(G);

10

Note that the adjacency matrix method cannot create a multigraph (graphs with multiple edges between the
same source and target node pair) and will instead assign weights to edges accordingly.

Edge List

source_nodes = {'A','A','B'};
target_nodes = {'B','C','C'};
edge_weights = [1 2 3]; % Weights of edges AB, AC and BC respectively
G = graph(source_nodes, target_nodes, edge_weights);
H = plot(G);
labeledge(H,1:numedges(G),edge_weights);

11

Notice that plot labels nodes automatically but not edges. We can use the labeledge function to label the
edges with their corresponding weights or write plot(G,'EdgeLabel',G.Edges.Weight). There exists a
range of functions to modify the nodes and edges of an existing graph as well as extracting subgraphs.

We will now go through how to construct a minimum spanning tree and how to determine if two graphs are
isomorphic.

Minimum Spanning Tree

s = [1 1 1 2 5 3 6 4 7 8 8 8];
t = [2 3 4 5 3 6 4 7 2 6 7 5];
weights = [100 10 10 10 10 20 10 30 50 10 70 10];
G = graph(s,t,weights);
p = plot(G,'EdgeLabel',G.Edges.Weight);
[T,pred] = minspantree(G); % The minimum spanning tree is stored in T.
% 'pred' here is short for predecessor nodes and specifies a directed version of the minimum spanning tree, with all edges directed away from the root node
highlight(p,T) % Highlights the nodes and edges of graph T. T must have the same nodes and a subset of the edges of the underlying graph of p.

12

Isomorphic

G1 = digraph([1 1 1 2 3 4],[2 3 4 4 4 1]);
G2 = digraph([3 3 3 2 1 4],[1 4 2 3 2 2]);
subplot(1,2,1) % Creates axes in tiled positions
plot(G1)
subplot(1,2,2)
plot(G2)

13

p = isomorphism(G1,G2) % p returns a vector of edge permutations if G1 and G2 are isomorphic and is empty otherwise.

p = 4×1
 3
 1
 4
 2

ENDING REMARKS
 First of all, thanks for reading all the way up to here, if you have any questions, suggestions or spot any
mistakes, please do not hesitate to send me an email or send MathSoc a message on FB at:

jamesgao985@gmail.com
https://www.facebook.com/unswmathsoc/

 I'll just end this by saying that the functionalities and possibilites of MATLAB is much much more than what
we have seen today. In future versions of the guide, I hope to be able to go into greater details about things
of greater interest to me like exploring packages, classification algorithms and graphing with real time data.
Thanks again and cya!

14

